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Abstract
Dyson–Schwinger equations (DSEs) for propagators are solved for the scalar
�3 theory and massive Wick–Cutkosky model. With the help of integral
representation, the results are obtained directly in Minkowski space in and
beyond bare vertex approximation. Various renormalization schemes are
employed which differ by the finite strength field renormalization function Z.
The S-matrix is puzzled from the Green’s function and the effect of truncation of
the DSEs is studied. Independent of the approximation, the numerical solution
breaks down for a certain critical value of the coupling constant, for which the
on-shell renormalized propagator starts to develop the unphysical singularity
at very high space-like square of momenta.

PACS numbers: 11.10.Gh, 11.15.Tk

1. Introduction

The Dyson–Schwinger equations (DSEs) are an infinite tower of the coupled integral equation
relating Green’s functions of the quantum field theory. If solved exactly, they could provide
solutions of the underlying quantum field theory. In practice, the system of equations is
truncated and we hope to obtain some information, in particular on the solution in the non-
perturbative regime, from solving the simplest equation for the two-point Green’s functions—
the propagators. The other vertex functions, which also enter the DSE for the propagator, are
either taken in their bare form or some physically motivated ansatz is employed.

In most papers dealing with the solution of DSEs, the Wick rotation from the Minkowski
to Euclidean space is used to avoid singularities of the kernel inherent to the physical Green’s
functions. To our knowledge, the only exception is the series of papers [1–4] employing the
so-called ‘gauge technique’ in quantum electrodynamics and its gauge invariant extension
to quantum chromodynamics [5]; this work represents the birth of the ‘pinch technique’.
Until now, the above-mentioned approach has never been used in its non-perturbative context.
Although not dealing with gauge theories, similarly to these techniques we instead solve
directly in the momentum space, making use of the known analytical structure of the
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propagator, expressed via the spectral decomposition. In the spectral or dispersive technique,
we write the Green’s function as a spectral integral over a certain weight function and
denominator parametrizing known or assumed analytical structure. The generic spectral
decomposition of the renormalized propagator reads

G(p2) =
∫

dα
σ̃ (α)

p2 − α − iε
(1)

where σ̃ (α) is called the Lehmann weight or simply the spectral function. If the threshold
is situated above the particle mass, as it is for the stable (and unconfined) particles, then the
spectral function typically looks like

σ̃ (α) = rδ(m2 − α) + σ(α) (2)

where the singular delta function corresponds with non-interacting fields and σ appears due
to the interaction. Finite parameters r then represent the propagator residuum and are simply
related to field renormalization. It is also supposed that σ is a positive regular function which
is spread smoothly from zero at the threshold. Note here that the positivity of Lehmann weight
is not required for our solution, but the models studied in this paper naturally embodied this
property; see, for instance, [6], or any standard textbook.

Putting the spectral decomposition of the propagators and the expression for the vertex
function into the DSE allows us to derive the real integral equation for the weight function σ(α).
This equation involves only one real principal value integration and can be solved numerically
by iterations. Our solutions are obtained both for space-like and time-like propagator momenta;
obtaining this in the Euclidean approach would require tricky backward analytical continuation.
Since all momentum integration are performed analytically, there is no numerical uncertainty
following from the renormalization which is usually present in Euclidean formalism [7]. Here,
the renormalization procedure is performed analytically with the help of the direct subtraction
in momentum space. This perturbative perfectly known renormalization scheme (see [8]
for scalar models and [9] for the QED case, where a comparison with other perturbative
renormalization schemes was also made) has been already applied to the QED and Yukawa
model [10] in its non-perturbative context. In this paper, the off-shell momentum subtraction
renormalization scheme was introduced and used. In order to simplify the technique and to
compare various schemes we restrict ourselves to the choice of on-mass-shell subtraction point
µ = m.

In this work, we would like to present certain solutions of rather obscure theories: �3

and �2
i �j scalar models. The second model will be referred to here as the (generalized)

Wick–Cutkosky model (WCM). In fact, not only models mentioned above but the all super-
renormalizable four-dimensional scalar models are not properly defined since they have no
true vacuum [11]. Instead of this they have only metastable vacua (here we assume non-zero
masses of all particle content, in the opposite case the appropriate classical potential would
not possess any local minimum). Instead of discarding these types of models, as sometimes
happens, we look at whether this ‘inconsistency’ can be captured by the formalism of DSEs, or
whether the appropriate solutions ‘behave ordinarily’. The property of super-renormalizability
makes our models particularly suitable for this purpose. Actually, the super-renormalizability
here implies the finiteness of the renormalization field constant Z which therefore cannot
be considered at all (i.e. Z = 1). In the case of �3 theory we do not fully omit the field
renormalization but, with the help of the appropriate choice of the constant Z, we choose
the given renormalization scheme. Making this explicitly and after the evaluation of the
scattering amplitude, we look (in each scheme) at whether the observables do converge (in
all schemes) to some experimentally measurable values of the virtual scalar world. As the
suitable observables, we chose the amplitude M for the scattering process �� → �� and



Non-perturbative solution of metastable scalar models 8705

we have not found any unexpected or even pathological behaviour. Instead of this, after the
approximations of the full solutions improve, we will see that the amplitudes calculated in
the various renormalization schemes tend to converge to each other; i.e. in this aspect, �3

theory behaves as the ordinary and physically meaningful one. Here, this is the right place to
note that the models with the metastable ground state serve as a useful methodological tool,
the role in which they are often employed. In fact, �3 theory serves as a good ground for
the study of the various phenomena [12–15] (including phenomena such as non-perturbative
asymptotic freedom and non-perturbative renormalization). There also exist a number of
papers dealing with the WCM. The DSEs for propagators of the WCM in their simple bare
vertex approximation have been solved for the purpose of calculating relativistic bound states
[16] (for other recent work dealing with the bound-state problem within the WCM, see [17]
and references therein). For the purpose of comparison with [16], we solve the exactly
analogical Minkowski problem. The obtained value of the critical coupling should depend
on the renormalization scheme. Having this slight dependence under control, it allows us to
compare with other non-perturbative methods [18, 19]. The comparison with conventional
perturbation theory is also made.

Regardless of the facts mentioned above, we are far from concluding that the �3 model
is a fully physically satisfactory one, since we do not know anything about the full solution.
At this point, the study presented in this paper and the studies of the �3 model in five [12] and
six [13] dimensions are conclusive in a similarly cautious way. Probably, a more sophisticated
conclusion could be obtained by some lattice study, which has not yet been done for this
purpose.

At the end of the introduction, we should mention that there is always the possibility of
including a sophisticated cut-off function f (�) into the Lagrangian and to regard our cubic
models as an effective model below this cut-off. The theory at energies above � could be
another field theory or string theory, or whatever. However, this method is developed and
the appropriate Polchinski renormgroup equations may be written down [20, 21]. These
cut-off methods lie somehow beyond the scope of this paper and we prefer to use the usual
renormalization schemes, where the independence on the appropriate regularization procedure
is manifest. Clearly, with the use of the cut-off method it would be difficult to perform the
aforementioned comparison with the results [16], where the on-mass-shell renormalization
scheme has been performed. Furthermore, we should note here that the dispersion technique
used throughout the proposed paper would become more complicated due to the presence of
the profile function f (�).

In the next section we present the DSEs for �3 for propagator and vertex functions.
Subsequently we discuss the renormalization procedure and rewrite the propagator equation
in its spectral form. Also, the numerical results and limitations are discussed. The WCM is
dealt with in section 3. It is solved numerically in its pure bare vertex approximation. The
details of calculations are relegated to appendices A and B.

2. Φ3 theory

2.1. Dyson–Schwinger equation for �3 theory

The Lagrangian density for this model reads

L = 1
2∂µφ0(x)∂µφ0(x) − 1

2m2
0φ

2
0(x) − g0φ

3
0(x) (3)

where index 0 indicates the unrenormalized quantities. With the help of the functional
differentiation of a generating functional (for this procedure, see for instance [22]) with



8706 V Šauli

classical action determined by equation (3) we obtain the following DSE (after transforming
into the momentum space) for the inverse propagator

G−1
0 (p2) = p2 − m2

0 − 	0(p
2)

	0(p
2) = i3g0

∫
d4q

(2π)4
�0(p − q, q)G0(p − q)G0(q)

(4)

where �0 is the full irreducible three-point vertex function which satisfies its own DSE (10).
The integral of 	0 is divergent and requires the mass renormalization. Making the on-mass-
shell subtraction we define renormalized self-energy 	R1

	R1(p
2) = 	0(p

2) − 	0(m
2) (5)

where m is the pole ‘physical’ mass, given by the equation G−1(m2) = 0. Defining the mass
counter-term

m2 = m2
0 − δm2 δm2 = 	0(m

2) (6)

and introducing additional finite renormalization constant

φ0 =
√

Zφ g0 = g
Zg

Z
3
2

(7)

we obtain the inverse of the full propagator in term of physical mass

G−1(p2) = Z(p2 − m2) − 	1(p
2)

	1(p
2) = Z(	0(p

2) − 	0(m
2))

Z	0(p
2) = i3g2

∫
d4q

(2π)4
�(p − q, q)G(p − q)G(q)

(8)

where g is a renormalized coupling and the constant Zg corresponds to the renormalization
of the vertex function, and G represents the renormalized propagator with respect to the field
strength renormalization, i.e.

� = Zg�0 G0(p
2) = ZG(p2). (9)

We closed the system of DSEs already at the level of equation for proper vertex. Instead
of solving the full renormalized DSE for the vertex

g�(p, l) = 6g + 6gi
∫

d4q

(2π)4
�(p, q)G(q)G(l − q)M(q, l, p) (10)

we approximate it by the first two terms of the appropriate skeleton expansion

g�(p, l) = 6g + i(6g)3
∫

d4q

(2π)4
G(q)G(p − q)G(l − q) (11)

i.e. we approximate the vertex inside the loop by its bare value and the scattering matrix M in
equation (10) is taken in its dressed tree approximation, i.e. M = G. In the following, we use
the name dressed vertex (DV) or improved approximation for the solution of the propagator
when equation (11) is used for obtaining the triplet scalar vertex � and in the same spirit we
use the name bare vertex (BV) approximation for such a solution where only the bare vertex
was used. The improvement of the approximation is achieved by the skeleton expansion of
the proper Green’s function where the series of DSEs is thrown away. Here, this is done at the
level of the triplet vertex. In [23], we can see how the problem is becoming more complicated
when M is non-trivially taken into account.

The equation for the propagator is solved in BV and DV approximations at each
renormalization scheme separately. We define these in the following section.
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2.2. Choosing the scheme

We assume (or rather we neglect it) that there interaction does not create the bound states
contributing to the weight function σ . We use the name minimal momentum subtraction
renormalization scheme (MMS) where the only mass subtraction is used and where the field
leaves unrenormalized, i.e. Z = 1. Therefore, we can write the spectral decomposition for the
propagator and for the self-energy 	 in the following form

G(p2) = r

p2 − m2
+

∫ ∞

4m2
dα

σ(α)

p2 − α − iε

= {p2 − m2 − 	1(p
2)}−1

	1(p
2) =

∫ ∞

4m2
dα

ρ(α)(p2 − m2)

(α − m2)(p2 − α + iε)

(12)

where πρ(s) represents the self-energy absorptive part and the threshold value of momentum
P 2

t = 4m2 is explicitly written. Obviously, in this MMS the propagator does not have the pole
residue r equal to unity

lim
p2→m2

(p2 − m2)G(p2) =
[

1 − d

dp2
	1(p

2)|p2=m2

]
= r

d

dp2
	1(p

2)|p2=m2 =
∫ ∞

4m2
dα

−ρ(α)

(α − m2)2
.

(13)

After a simple algebra and taking the imaginary part of equation (12) we arrive at the relation
between the spectral functions σ and ρ

σ(ω) = rρ(ω)

(ω − m2)2
+

1

ω − m2
P.

∫ ∞

4m2
dα

σ(ω)ρ(α)ω−m2

α−m2 + σ(α)ρ(ω)

ω − α
(14)

where P. denotes principal value integration.
This is the first of two necessarily coupled equations which we actually solve for a given

theory. We discuss it in some detail since its form depends only on the adopted renormalization
procedure, not on the actual form of the interaction, nor on the approximation employed for
the vertex function � in the DSE for the propagator. The second equation connecting σ and
ρ does depend on the form of vertex. Its derivation is more complicated and we deal with it
in appendix A.

In some cases, the form (14) is not the most convenient one; for instance, when we want
to look the bound-state spectrum influence causes just by the self-energy effect [24]. Note
the presence of the constant r in the first term on the right-hand side; it has to be determined
from the relations (13) after each iteration. To get rid of this, we define the usual on-shell
renormalization scheme with unit residuum (OSR scheme) by

Z = 1 + δZ δZ = d

dp2
	1(p

2)|p2=m2 (15)

which gives the standard receipt how to calculate the OSR propagator

GOSR(p2) = {p2 − m2 − 	2(p
2)}−1

	2(p
2) = 	(p2) − 	(m2) − d

dp2
	(p2)|p2=m2(p2 − m2)

	(p2) = i3g2
2

∫
d4q

(2π)4
�(p − q, q)G(p − q)G(q)

(16)
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and subsequently implies the spectral decomposition for GOSR and 	2

GOSR(p2) = 1

p2 − m2
+

∫ ∞

4m2
dα

σ2(α)

p2 − α − iε

	2(p
2) =

∫ ∞

4m2
dα

ρ2(α)(p2 − m2)2

(α − m2)2(p2 − α + iε)
.

(17)

The relation between σ2 and ρ2 is now derived in the same way as before and it reads

σ2(ω) = ρ2(ω)

(ω − m2)2
+

1

ω − m2
P.

∫ ∞

4m2
dα

σ2(ω)ρ2(α)
[

ω−m2

α−m2

]2
+ σ2(α)ρ2(ω)

ω − α
. (18)

Note that equations (14) and (18) are inequivalent due to the scheme difference. The
appropriate dependence of the weights ρ and ρ2 on the coupling constants g and g2 is
explicitly written in appendices A and B, respectively. (Two inequivalent renormalization
schemes should give different Green’s functions, but should give the same S-matrix.)

At the end of this section, we very briefly discuss dimensional renormalization prescription
[25], showing here that it is fully equivalent to MMS to all orders (note that the perturbation
theory is naturally generated by the coupling constant expansion of the DSE’s solution). For
this purpose we choose the modified minimal subtraction M̄S scheme, noting that any other
sort of scheme based on the dimensional regularization method would be treated in the same
way. Since the only infinite contributions are affected when this renormalization is applied,
therefore the contribution with the dressed vertex (master diagram and so that) satisfies the
unsubtracted dispersion relation (DR) while for instance the one-loop skeleton self-energy
diagram (in a fact the only irreducible contribution which is infinite in four dimensions) looks
(for space-like momenta) like

	
[1]
M̄S

(p2) = 18g2

(4π)2

∫ 1

0
dx ln

{
m2 − p2x(1 − x)

µt’Hooft

}
+ 	(p2)finite (19)

where 	finite represents the omitted finite terms which are not affected by dimensional
renormalization at all (since they are finite to all orders).

The inverse of the full propagator reads in this scheme

G−1
M̄S

(p2) = p2 − m2(µt’Hooft) − 	
[1]
M̄S

(p2) − 	(p2)finite. (20)

Identifying the pole mass by equality G−1
M̄S

(
p2 = m2

p

) = 0 we simply arrive at the result

G−1
M̄S

(p2) = p2 − m2
p − 	1(p

2) (21)

where

m2
p = m2(µt’Hooft) + 	

[1]
M̄S

(
m2

p

)
+ 	

(
m2

p

)
finite

	1(p
2) = 	

[1]
M̄S

(p2) − 	(p2)finite − 	
[1]
M̄S

(
m2

p

) − 	
(
m2

p

)
finite.

(22)

Since the pole mass is a renormgroup invariant quantity, we see that the M̄S scheme
exactly corresponds with the single-subtraction renormalization scheme, i.e. the MMS. Note
here that in renormalizable models such identification is not so straightforward but always
possible [9]. Of course, the appropriate identification is then rather complicated. To conclude
this section, we can see that the popular renormalization prescription such as MS or M̄S

schemes can be ordinarily used in the non-perturbative context. At this point we disagree with
the opposite statement of the paper [28].
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2.3. Test of scheme (in-)dependence

The physical observables should be invariant not only with respect to the choice of
renormalization scale, but also with respect to the choice of renormalization scheme. The
first invariance is more than manifest in our approach, since all the quantities used here are
the renormgroup invariants. The second mentioned invariance is less obvious and, in fact, it
is clear only for some very simple cases. (The most simple case is the tree-level amplitude
evaluation, where the residua of the propagators may be exactly absorbed into the redefinitions
of the coupling constants; but, of course, in this case the renormalization is not required.) In
any reasonable renormalizable quantum field theory, it is strongly believed that the obtained
exact Green’s functions must build the same S-matrix. In perturbation theory, we usually
have several first terms of perturbation expansion and we hope that they offer a satisfactory
description of the nature when the ‘right’ choice of renormalization scheme is made [9, 26].
Furthermore, we should be aware that the possible sum of infinitely many terms of perturbation
series should be regarded as an asymptotic one. In fact, the application of some sophisticated
resummation technique is necessary in that case [22, 27].

In DSE treatment we can talk about the level of DSE’s system truncation instead of a given
coupling order. In the text below we describe a simple possible procedure of how to see the
improvements of a physical observable when it is calculated within the improved truncation
of DSEs. For this purpose, the BV and DV solutions of DSEs in both MMS and OSR schema
are used to compose the same physically measurable quantity.

For our explanation we have explicitly chosen the matrix element M of the elastic scattering
process φφ → φφ which can be written

M(s, t, u) =
∑

a=s,t,u

�G(a)� + · · · =
∑

a=s,t,u

(6g)2G(a) + · · · . (23)

The dots denote neglected boxes and crossed boxes contributions and the letters s, t, u in
equation (23) represent the usual Mandelstam variables that satisfy s + t + u = 4m2, since
now, the external particles are on-shell.

Using the notations introduced in the previous section, then the matrix M in MMS scheme
is calculated as

MMMS =
∑

a=s,t,u

(6g)2G(a) (24)

where the propagator is calculated through equations (12), (13) and(14). For OSR, the
scattering matrix is composed as

MOSR =
∑

a=s,t,u

(6g2)
2GOSR(a) (25)

where the propagator is calculated through equations (16), (17) and (18) and the relations for
ρ are reviewed in appendices A and B.

In the ideal case we would obtain

MMMS = MOSR (26)

which should be a consequence of exact scheme independence. In reality, relation (26)
is not exactly fulfilled due to the truncation of the DSE system. In what follows, we
describe how to check the consistent condition (26) and how to see the appropriate deviation
numerically.

Clearly, the equality should be valid in each kinematic channel separately. For instance,
choosing the t-channel for this purpose and comparing the pole part of matrices M we obtain
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the relation between the coupling at each scheme

g2
2 = rg2 (27)

where r is the residuum calculated from equation (13). This implies for us that if we calculate
the Green’s function in the OSR scheme to compose the same S-matrix the Green’s functions
in the MMS scheme must be calculated with the coupling g2 = √

rg. Having the results for σ

and σ2 extracted from the DSEs solved in the appropriate schemes, we can compare imaginary
parts of scattering matrices MMMS and MOSR. Our approximation (24) and (25) implies

g2
2σ2(ω) = g2σ(ω). (28)

How accurately this equality is fulfilled at non-trivial regime t > 4m2 can be simply checked.
For this purpose we evaluate the integral (weighted) deviation EN

EN =
∫

[MOSR(t) − MMMS(t)] dt
tN∫

[MOSR(t) + MMMS(t)] dt
tN

=
∫

[σ2(t) − σ(t)/r] dt
tN∫

[σ2(t) + σ(t)/r] dt
tN

(29)

where the parameter N serves to adjust the regime of momenta in which we are interested. A
larger value of N enhanced the threshold values of momenta while the ultraviolet modes are
suppressed in that case. We choose N = 0, 1 for the purpose of this paper.

Let us stress at the end of this section, that the next leading order of M is scheme-invariant
and all the differences therefore follow from the remnant of the full DSE solution. Hence
only negligible deviation is expected for small couplings. Also, in general, the deviation EN

should decrease when considered approximations become more and more close to the full
non-perturbative solution and it should principally vanish for the exact solution. In other
words, EN must decrease when the approximation (truncation of DSEs) improves. The results
obtained by the above sketched method are reviewed in the next section.

2.4. Results

The integral equations for Lehmann weights have been solved numerically by the method of
iteration. The appropriate solutions, obtained for several hundreds of mesh points and with
the use of some sophisticated integrator, have an accuracy of approximately one part of 104

for a reasonable value (λ � λcrit) of the coupling strength λ and increase (up to several per
cent) when λ � λcrit. The coupling strength is defined as dimensionless quantity

λ = 18g2

16π2m2
. (30)

The critical value of λ is simply defined by the collapse of the (numerically sophisticated)
solution of the imaginary part DSEs. Before making a comparison of physical quantities, we
present the numerical results for the Green’s functions. In figure 1 the so-called dynamical
mass

M(p2) = G−1(p2) − p2 (31)

of the �3 theory boson is presented for various coupling strengths in both renormalization
schemes. The infrared details are displayed in figure 2. The dynamical mass is not directly
physically observable since it is scheme-dependent from the definition; the exception is the
pole mass which is scheme-independent and renormgroup-invariant as well. It is interesting
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Figure 1. Dynamical mass of scalar particle in �3 theory calculated in the bare vertex
approximation in both renormalization schemes. The lines are labelled by λMMS for the MMS
scheme and λOSR for the OSR renormalization scheme.
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Figure 2. Infrared (threshold) details of figure 1.
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Figure 3. The propagator deviations from free theory. The propagator is calculated in minimal
momentum renormalization scheme for various λMMS.

that there are time-like values of square of momenta where the propagators behave almost like
free ones, no matter how strong the coupling constant. This occurs somewhere around the
point p2

f = 6m2 for the OSR scheme and approximately at p2
f = 20m2 for the MMS scheme,

which implies the physical irrelevance of such a behaviour. (Of course, there are always
differences within the absorptive parts πρ which are ordinarily coupling constant dependent at
these points.) The appropriate relevance of propagator dressing is best seen when the dressed
propagator is compared with the free one G = (p2 −m2)−1. From figures 3 and 4, we can see
that the propagator function is the most sensitive with respect to the self-energy correction for
threshold momenta where these correction are enhanced about one magnitude, while they are
largely suppressed for the above-mentioned values of momenta p2

f . Note that nothing from
these facts can be read from the purely Euclidean approach. The results presented up to now
have been calculated in the bare vertex approximation; the solution with vertex correction
included will be discussed below. The appropriate bare vertex approximation critical coupling
value is λOSR

crit � 3.5 for the OSR scheme and λMMS
crit � 5 for the MMS scheme. Their different

values are not a discrepancy but the necessary consequence of the renormalization scheme
dependence.

Furthermore, in order to see the effect of self-consistency of the DSE treatment we
compare the DSE result with the perturbation theory in the OSR scheme. From figure 5 we
can see that the perturbation theory is perfectly suited method when applied somewhere below
the critical value of the coupling. Therefore, the main goal of our solution is the information
about the domain of validity of the given model.

The issue of vertex improvement by the one-loop skeleton diagram and its appropriate
effect on the DSE solution and scattering matrix is discussed in the text below. First let us
note that the critical values of the couplings decrease and we have λdressed vertex

crit � λbare vertex
crit

/
2,
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Figure 4. The propagator deviation from free theory. The propagator is calculated in the on-mass-
shell renormalization scheme with unit residuum for various λOSR.

which is roughly valid for both renormalization schemes employed. We return to the question
of meaning λcrit when we discuss the WCM.

To make our comparison of the proposed methods more meaningful, we do not compare
the Green’s functions but rather we look at the scattering amplitudes M calculated in both
renormalization schemes obtained in both truncations of DSEs. In figure 6 we compare the
imaginary parts of scattering amplitudes M at a given kinematic channel. The comparison
is made in the way proposed and described in the previous section. Henceforth, what are
actually compared in this figure are the Lehmann weights σ of the MMS scheme calculated
for certain λMMS and the rescaled Lehmann weights rσ2 calculated for the OSR scheme
with the appropriate coupling strength λOSR = rλMMS. It is then apparent that the lines
for Im MOSR(rλMMS, t) and Im MMMS(λMMS, t) for solutions with dressed vertices are much
closer each other than the solution with bare vertices. This statement is valid for all t for a
given theory characterized by its coupling constant (with λMMS fixed). This is true for all
couplings λ, the only—but not so striking—exception is certain infrared excess for the value
of couplings close to the critical one. Of course, the worse numerical accuracy plays a role in
strong coupling. Nevertheless, we can see that when the approximation improves then there
is apparent signal for achieving the renormalization scheme independence for all values of the
coupling constant.

In order to see the aforementioned quantitative improvement we have calculated the
appropriate deviations EN and N = 0, 1. The results for some larger value of the couplings
are presented in table 1. The corresponding difference becomes negligible when λ decreases
and approaches its ‘perturbative’ value. For better orientation the infrared details for three
choices of the coupling constants are also displayed in figure 7.
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Figure 5. Comparison of DSE results in the bare vertex approximation with the perturbation
theory result. DSE and bubble summation is compared in the OSR scheme. Each two close lines
of different types correspond to the same value of coupling λOSR = {0.25; 1.0; 1.5; 2.2}. The
lowest dashed line with λ = 10 does not have its DSE partner solution (since λ > λc).
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Figure 6. Imaginary parts of the scattering matrix calculated with a propagator which have been
obtained in the MMS and OSR schemes with (dv) and without (bv) an improved vertex. Each set
of lines corresponding to the same model is labelled by the coupling strength λMMS.
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Table 1. Normalized and weighted integral deviations EN between scattering amplitudes calculated
in the OSR and MMS schemes. Exact scheme independence corresponds to the case EN = 0.
The parameter N = 1 makes the quantity E more sensitive to the systematic error in the infrared
domain. The notation BV(DV) means that the appropriate propagator was calculated with a bare
(dressed) vertex. The function E is displayed for three cases of results presented in figures 6 and 7.

EN=0 BV EN=0 DV EN=1 BV EN=1 DV

λ = 0.1 0.020 0.0039 0.022 0.0078
λ = 0.5 0.076 0.025 0.071 0.025
λ = 1.0 0.15 0.040 0.13 0.08

3. DSEs for the WCM

The massive WCM is given by the following Lagrangian

L =
∑

i

1

2
∂µ�i∂

µ�i −
∑

i

1

2
m2

i �
2
i +

(
g13√

2
�2

1 +
g23√

2
�2

2

)
�3 + C.P. (32)

where C.P. means the appropriate counter-term part. Here we choose the second
renormalization scheme employed in the previous section, i.e. the propagators of all three
particles have the unit residua. All the definitions of counter-terms δZi, δmi, δgi correspond
with the ORS defined previously but now for each particle separately. Furthermore, we adjust
the couplings to be

gi3 = Zgi3

ZiZ
1
2
3

gi30 i = 1, 2 (33)
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such that

g13 = g23. (34)

The equal mass case m1 = m2 has already been solved [24] for the purpose of studying
the self-energy effect on the bound-state spectrum. Here we solve the unequal mass case

m1

m2
= 4 m3 = m2 (35)

and compare the result with the Euclidean version of solution [16]. We restrict ourselves
to the bare vertex approximation which is sufficient for comparison with [16]. Since all the
derivation is rather straightforward, we simply review the results The renormalized DSEs in
bare vertex approximation read

G−1
Ri (p) = p2 − m2

i − 	i(2)(p
2) i = 1, 2

G−1
R3(p) = p2 − m2

3 − 	3(2)(p
2)

	i(p
2) = i2g2

∫
d4q

(2π)4
G3(p − q)Gi(q) i = 1, 2

	3(p
2) = ig2

∫
d4q

(2π)4

∑
i=1,2

Gi(p − q)Gi(q)

(36)

where the bracketed index denotes the renormalization scheme employed, and the second
index labels the particle associated with the appropriate field in the Lagrangian (32). All the
propagators satisfy the Lehmann representation with unit residuum and all the proper function
obeys the double-subtracted DR (17). Henceforth, the appropriate spectral weights are related
through the relations

σi(ω) = ρi(ω)(
ω − m2

i

)2 +
1(

ω − m2
i

)P.

∫ ∞

(mj +mk)2
dα

σi(ω)ρi(α)
[ω−m2

i

α−m2
i

]2
+ σi(α)ρi(ω)

ω − α
(37)

where for the indices i = 1, 2 we have j = 2, 3; k = 3, 3 and for particle three the index
j = k = 2 since it labels the lighter particle with the mass m2. The expression for the
absorptive parts is

ρπi
(ω) = 2g2

(4π)2

[
B

(
m2

i , m
2
3;ω

)
+

∫ ∞

0
dα

(
B

(
α,m2

i ;ω
)
σ3(α) + B

(
α,m2

3;ω
)
σi(α)

)
+

∫ ∞

0
dα dβB(α, β;ω)σ3(α)σi(β)

]
i = 1, 2

ρπ3(ω) =
∑
i=1,2

g2

(4π)2




√
1 − 4m2

i

ω
+ 2

∫ ∞

0
dαB

(
α,m2

i ;ω
)
σi(α)

+
∫ ∞

0
dα dβB(α, β;ω)σi(α)σi(β)


 (38)

where we freely integrate over the the whole range of positive real axis leaving the
information about the appropriate thresholds and subthresholds absorbed in the definition of the
function B.

The above set of equations has actually been solved numerically. The main result for
us is the appearance of the critical coupling strength λc ≡ g2

c

/(
4πm2

2

) = 0.12 which rather
accurately corresponds with the point where the renormalization constant Z2 turns out to be
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Figure 8. The dependence of field strength renormalization constants on the coupling strength of
the WCM. The indices 1–3 label the particles.

negative. The appropriate dependence of the renormalization constants Zi is presented in
figure 8 for all three particles. The obtained critical value is in reasonable agreement with that
obtained by the Euclidean solution of the DSE system [16], where λc = 0.086, as well as with
the critical value λc = 0.063 which was found using a variational approach [18, 19].

Furthermore, the existence of the critical coupling of OSR scheme can be seen from the
analytical formula for the inverse of propagator

G−1
i = p2 − m2

i −
∫ ∞

0
dα

ρi(α)
(
p2 − m2

i

)2(
α − m2

i

)2
(p2 − α + iε)

(39)

which implies that for strong enough coupling the Landau pole should appear, which must
arise when the factor L

L =
[

1 −
∫ ∞

0

ρ(α)

(α − m2)2

]
(40)

is negative (when it is just zero then the Landau pole is situated in space-like infinity, and for
the positive L this singularity never appears due to the finiteness of the appropriate integral
in equation (40)). For negative L the propagator cannot satisfy Lehmann representation at all
and at least the Minkowskian treatment used in this work must fail. Comparing equation (40)
with the definition of renormalization constant Z we clearly have the identification L = Z. As
we have mentioned, the numerical solution starts to fail when the condition Z = 0 is fulfilled.
This statement is justified with 10% numerical accuracy. (We have no similar guidance for
the MMS scheme but we expect the similar appearance of the critical coupling λMMS for this
scheme, as occurred in �3 theory, but the reason for the numerical failure in this case is not
found in this paper.)
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4. Conclusion

We have obtained numerical solutions of the DSEs in Minkowski space for �3 theory and the
WCM. This suggests that the expansion of the theory around the metastable vacuum leads to
the predicative result. Our technique allows us to extract propagator spectral function ρ(s)

with reasonably high numerical accuracy. Since the renormalization procedure is performed
analytically, it has no effect on the precision of the solution. When the coupling does not
exceed a certain critical value, then the domain of analyticity of the propagator is the all
real axis of p2. An attempt to clarify the meaning of the critical coupling value was made.
This suggests that it corresponds with the appearance of unphysical singularity in the on-shell
renormalized propagator. Consequently, the field renormalization constant (in the on-shell
scheme) turns to be negative for λ > λcrit.

Appendix A. Dispersion relations for self-energies in bare vertex approximation

In this appendix we derive DRs for self-energies in both renormalization schemes for the
bare vertex. The calculation is very straightforward, and in fact it represents nothing but an
evaluation of the one-loop scalar Feynman diagram with different masses in internal lines.

Substituting the Lehmann representation for MMS propagators (12) the unrenormalized
	 can be split as

	(p2) = 	(b,b)(p
2) + 2	(b,s)(p

2) + 	(s,s)(p
2)

	(b,b)(p
2) =

∫
dq̄

18r2g2

((p + q)2 − m2 + iε)(q2 − m2 + iε)

	(b,s)(p
2) =

∫
dq̄

∫
dα

18rg2σ(α)

(q2 − α + iε)((p + q)2 − m2 + iε)

	(s,s)(p
2) =

∫
dq̄

∫
dα dβ

18g2σ(α)σ (β)

((p + q)2 − α + iε)(q2 − β + iε)

(A.1)

where we have used shorthand notation for the measure i d4q/(2π)4 ≡ dq̄. Making the
subtraction, we immediately arrive for the pure perturbative contribution (up to the presence
of the square of residuum):

	1(b,b) =
∫ ∞

4m2
dω

ρ1(b,b)(p
2 − m2)

(p2 − ω + iε)(ω − m2)

ρ1(b,b)(ω) = 18r2g2

(4π)2

√
1 − 4m2

ω
.

(A.2)

The most general integral to be solved is similar to the above case but with the physical
masses replaced by the spectral variables.

I (p2) =
∫

dq̄
1

((p + q)2 − α)(q2 − β)
(A.3)
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which after the subtraction (A.4) and integration over the Feynman parameter x leads to the
appropriate single-subtracted DR (A.4)

I1s(p
2) = I (p2) − I (m2) = 1

(4π)2

∫ [1]

0
dx

∫ ∞

m2x+α(1−x)

x(1−x)

dω
(p2 − m2)

(ω − m2)(p2 − ω + iε)

=
∫ ∞

0
dω

p2 − m2

(p2 − ω + iε)

B(α, β;ω)

(4π)2(ω − m2)
(A.4)

where the function B(u, v;ω) is defined through the Khallen triangle function λ as

B(u, v, ω) = λ1/2(u, ω, v)

ω
�

(
ω − (

α
1
2 + β

1
2
)2)

λ(u, ω, v) = (u − ω − v)2 − 4ωv

= ω2 + u2 + v2 − 2ωv − 2ωu − 2uv.

(A.5)

It can easily be checked that B(m2,m2;ω) =
√

1 − 4m2

ω
�(ω − 4m2) which has already been

introduced in (A.2).
The OSR scheme requires additional subtraction which is finite and henceforth can

proceed by making a simple algebra

I2s(p
2) = I1s(p

2) − d

dp2

∣∣∣∣
p2=m2

I1s(p
2)

= 1

(4π)2

∫ ∞

0
dω

(p2 − m2)2

(ω − m2)2(p2 − ω + iε)
B(α, β;ω). (A.6)

To summarize the results, we see that MMS self-energy satisfies single-subtracted DR
with the absorptive part πρ1 given as

ρπ1(ω) = ρ1(b,b)(ω) + 2ρ1(b,s)(ω) + ρ1(s,s)(ω)

ρ1(b,b)(ω) = 18r2g2

(4π)2

√
1 − 4m2

ω

ρ1(b,s)(ω) =
∫ ∞

9m2
dα

18rg2

(4π)2
B(α,m2;ω)σ(α)

ρ1(s,s)(ω) =
∫ ∞

16m2
dα dβ

18g2

(4π)2
B(α, β;ω)σ(α)σ (β)

(A.7)

while the self-energy in OSR scheme satisfies the double-subtracted DR with the absorptive
part πρ2

ρπ2(ω) = ρ2(b,b)(ω) + 2ρ2(b,s)(ω) + ρ2(s,s)(ω)

ρ2(b,b)(ω) = 18g2

(4π)2

√
1 − 4m2

ω

ρ2(b,s)(ω) =
∫ ∞

9m2
dα

18g2

(4π)2
B(α,m2;ω)σ2(α)

ρ2(s,s)(ω) =
∫ ∞

16m2
dα dβ

18g2

(4π)2
B(α, β;ω)σ2(α)σ2(β).

(A.8)
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Appendix B. Two-loop skeleton self-energy dispersion relation

The finite two-loop integral appears after the substitution of the vertex (11) to the self-energy
formula∫

dq̄ dk̄[(k2 − α1 + iε)((p + k)2 − α2 + iε)((k − q)2 − α3 + iε)

× (q2 − α4 + iε)((p + q)2 − α5 + iε)]−1 (B.1)

where all the irrelevant pre-factors are omitted for purpose of the brevity. They will be
correctly added at the end of the calculation for both renormalization schemes separately. The
contribution is ultraviolet finite therefore we first calculate the unrenormalized result. Firstly,
we parametrize the off-shell vertex by matching the first three denominators and consequently
we integrate over the triangle loop momentum k∫

k̄[(k2 − α1 + iε)((p + k)2 − α2 + iε)((k − q)2 − α3 + iε)]−1

=
∫

k̄

∫ 1

0
dx dy2y[k2xy + (p + k)2(1 − x)y + (k − q)2(1 − y)

−α1xy − α2(1 − x)y − α3(1 − y) + iε]−3

=
∫ 1

0

dx dyy

(4π)2
[p2(1 − x)y(1 − (1 − x)y) + q2y(1 − y) + 2pq(1 − x)y(1 − y)

−α1xy − α2(1 − x)y − α3(1 − y) + iε]−1. (B.2)

Next, we substitute x → 1 − x and after some algebra we obtain for equation (B.2)∫ 1

0

dx dy

(4π)2(1 − y)

[
q2 + 2pqx + p2 x(1 − xy)

(1 − y)
− O1−3 + iε

]−1

(B.3)

where we have used short notation O1−3 = α1
1−x
1−y

+ α2
x

1−y
+ α3

1
y

. We continue by matching
equation (B.3) with two spare denominators in equation (B.1) by using Feynman variables z

and u for denominators with α4 and α5, respectively. Then we can write for equation (B.1)∫
dq̄

∫ 1

0

dx dy dz du2u

(4π)2(1 − y)

[
q2 + 2pqxzu + 2pq(1 − u)

+ p2 (1 − xy)xzu

(1 − y)
+ p2(1 − u) − O1−5 + iε

]−3

(B.4)

where we have used shorthand notation O1−5 = O1−3zu + α4(1 − z)u + α5(1 − u). Shifting
q + p(xzu + 1 − u) → q and integrating over new q yields∫ 1

0

dx dy dz duu

(4π)4(1 − y)F (x, y, z)

1[
p2 − O1−5

F(x,y,z)
+ iε

]
(B.5)

F(x, y, z) = 1 − u +
(1 − xy)xzu

(1 − y)
− (xzu + (1 − u))2.

Next, we substitute u → ω where ω = O1−5/F (x, y, z). Using the notation

ω = ua1 + a2

u2b1 + ub2
(B.6)
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a1 = (α1(1 − x)y + α2xy + α3(1 − y))z + (α4(1 − z) − α5)y(1 − y)

a2 = α5y(1 − y)

b1 = −(1 − xz)2y(1 − y)

b2 = (1 − 2xz)y(1 − y) + (1 − xy)xyz

(B.7)

we can write the appropriate DR for equation (B.1)

�(ω;α1, . . . , α5) =
∫ ∞

0

dω

p2 − ω + iε

∫ 1

0

dx dy dz

(4π)4(1 − y)

�
(
ω − a1+a2

b1+b2

)
�(D)[

α5
U 2 − ω(1 − xz)2

]
U = −B +

√
D

2A
D = B2 − 4AC A = ωb1 B = ωb2 − a1 C = −a2.

(B.8)

Note here that the spectral function (everything after the first fraction in equation (B.8)) is
always positive for allowed values of α and it is regular function of its argument ω. The various
subthresholds are then given by the values of Lehmann variables α in accordance with the step
function presented, noting that the perturbative threshold is given again by 4m2 and in that case
the result is partially simplified. For completeness we reviewed the associated simplifications,
namely a1 = m2z(1 − y(1 − y)); a2 = m2y(1 − y). Performing single subtraction for the
MMS and double subtraction for OSR scheme we can recognize that the appropriate skeleton
DR for master diagram has the absorptive part

ρ
[2]
1 (ω) = (6g)4

2

5∏
i=1

∫
dαi σ̃ (αi)�(ω, α1, . . . , α2) (B.9)

for the MMS scheme and

ρ
[2]
2 (ω) = (6g2)

4

2

5∏
i=1

∫
dαi σ̃2(αi)�(ω, α1, . . . , α2) (B.10)

for the OSR scheme, respectively. In fact, it gives rise to 28 various contributions to ρ[2]

(only 12 are actually topologically independent, distinguished by the number of continuous
Lehmann weights with the appropriate position of spectral variable in �). All of these have
been found numerically for the purpose of the DSE solution.
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[10] Šauli V 2003 J. High. Energy Phys. JHEP02(2003)001 (Preprint hep-ph/0209046)
[11] Baym G 1960 Phys. Rev. 117 886
[12] Cornwal J M 1997 Phys. Rev. D 55 6209
[13] Cornwal J M 1995 Phys. Rev. D 52 6074
[14] Delbourgo R, Elliott D and McAnally D 1997 Phys. Rev. D 55 5230



8722 V Šauli

[15] Broadhurst D J and Kreimer D 2001 Nucl. Phys. B 600 403
[16] Ahlig S and Alkofer R 1999 Ann. Phys., NY 275 113
[17] Nieuwenhuis T and Tjon J A 1996 Few Body Syst. 21 167
[18] Rosenfelder R and Schreiber A W 1996 Phys. Rev. D 53 3337
[19] Rosenfelder R and Schreiber A W 1996 Phys. Rev. D 53 3354
[20] Polchinski J 1984 Nucl. Phys. B 231 269
[21] Morris T R 1994 Int. J. Mod. Phys. A 9 2411
[22] Itzykson C and Zuber J B 1980 Quantum Field Theory (New York: McGraw-Hill)
[23] Detmold W 2003 Phys. Rev. D 67 085011
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